翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

areostationary orbit : ウィキペディア英語版
areostationary orbit
An areostationary orbit (abbreviated ASO) is a circular areo­synchronous orbit in the Martian equatorial plane about above the surface, any point on which revolves about Mars in the same direction and with the same period as the Martian surface. Areo­stationary orbit is a concept similar to Earth's geo­stationary orbit. The prefix ''areo-'' derives from Ares, the ancient Greek god of war and counterpart to the Roman god Mars, with whom the planet was identified. The modern Greek word for Mars is ''Άρης'' (Áris).
To date, no artificial satellites have been placed in this orbit, but it is of interest to some scientists foreseeing a future tele­communications network for the exploration of Mars.〔
〕 The proposed Mars One mission includes a communications system featuring amongst others things an areostationary satellite. An asteroid or station placed in areostationary orbit could also be used to construct a Martian space elevator for use in transfers between the surface of Mars and orbit.
== Formula ==

Orbital speed (how fast a satellite is moving through space) is calculated by multiplying the angular speed of the satellite by the orbital radius:
: v = \omega r \text
By this formula we can find the geostationary-type orbit of an object in relation to Mars (this type of orbit above is referred to as an areostationary orbit if it is above Mars). The areogeocentric gravitational constant GM (which is μ) for Mars has the value of 42,828 km3s−2, and the known rotational period (''T'') of Mars is 88,642.66 seconds. Since ω = 2π/''T'', using the formula above, the value of ω is found to be approx 7.088218×10−5 s−1. Thus, ''r''3 = 8.5243×1012 km3, whose cube root is 20,427 km; subtracting the equatorial radius of Mars (3396.2 km) we have 17,031 km.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「areostationary orbit」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.